GCE

## Physics A

Advanced Subsidiary GCE
Unit G481: Mechanics

## Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

## CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the $\mathbf{C}$-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

## Note about significant figures:

Significant figures are rigorously assessed in the practical skills.
If the data given in a question is to 2 sf, then allow answers to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Additional Guidance.

| Question |  | Expected Answers | Marks |  |
| :---: | :---: | :--- | :---: | :--- |
| $\mathbf{1}$ | $\mathbf{a}$ | i | work (done) / (elastic potential) energy | B1 |
| Not: heat / gravitational potential energy / kinetic energy |  |  |  |  |
|  | ii | displacement / distance | B1 |  |
| $\mathbf{b}$ | Any two from: <br> $\bullet$ <br> $\bullet$ <br> $\bullet$ Moment (of a force) <br> $\bullet$ Work (done) / energy | B1×2 | Not: ‘Couple' for 'torque' |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance <br> Allow: $\rho=\frac{M}{V}$, where $M=$ mass and $V=$ volume Not: mass per $\mathrm{m}^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | a |  | density = mass/volume or 'density is mass per (unit) volume’ | B1 |  |
|  | b | i | Dramatic change(s) in density (at 3.0 Mm and 5.1 Mm) (AW) | B1 | Not: There are three (distinct) layers / Each layer has different density |
|  |  | ii | $\begin{aligned} & \text { mass }=0.18 \times 6.0 \times 10^{24}\left(=1.08 \times 10^{24} \mathrm{~kg}\right) \\ & \text { or } \\ & \text { radius }=1.3 \times 10^{6}(\mathrm{~m}) \\ & \text { volume }=\frac{4}{3} \pi \times\left(1.3 \times 10^{6}\right)^{3} \\ & \text { density }=\frac{1.08 \times 10^{24}}{9.20 \times 10^{18}} \\ & \text { density }=1.2 \times 10^{5}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$ | C1 <br> C1 <br> A1 | Note: The first C1 mark is for determining the mass or the radius of core <br> Possible $10^{\mathrm{n}}$ errors <br> Bald answer of $1.2 \times 10^{5}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ or $1.17 \times 10^{5}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ scores 3 marks Allow: 2 marks for $\frac{6.0 \times 10^{24}}{9.20 \times 10^{18}}=6.5 \times 10^{5} \quad$ (factor of 0.18 missed out) <br> Note: The last two C1 and A1 marks cannot be scored if incorrect radius is used. Hence no further marks for $\frac{1.08 \times 10^{24}}{\frac{4}{3} \pi \times\left(6.4 \times 10^{6}\right)^{3}}$ or $\frac{1.08 \times 10^{24}}{\frac{4}{3} \pi \times\left(5.1 \times 10^{6}\right)^{3}}$, etc |
|  |  |  | Total | 5 |  |


| Question |  | Expected Answers | Marks | Additional Guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | a |  | A quantity with magnitude / size and direction <br> Suitable example: displacement / velocity / <br> acceleration / force / weight etc | B1 | B1 |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q 4 | a |  | Any two from: <br> - area <br> - speed / velocity <br> - viscosity (of air) / temperature / density <br> - (surface) texture / 'aerodynamic' (shape) | B1×2 | Not: shape / size <br> Allow: ‘streamlining’ |
|  | b | i | Correct directions of arrows $W$ and $D$ | B1 | Award the mark for two arrows in opposite directions as long as one of them is labelled |
|  |  | ii | $\begin{aligned} & \text { weight }=75 \times 9.81 \\ & \text { weight }=736(\mathrm{~N}) \text { or } 740(\mathrm{~N}) \end{aligned}$ | B1 | Reminder: weight can be quoted to more than 2 sf (e.g: 735.75) <br> Not: ‘ $75 \times 10=750 \mathrm{~N}$ ' |
|  |  | iii | $\begin{aligned} & D=0.30 \times 20^{2}(=120 \mathrm{~N}) \\ & 736-120=75 a \\ & a=8.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ | C1 <br> C1 <br> A1 | Allow: Answer to 2sf or more <br> Bald answer of 8.2 or 8.21 scores 3 marks <br> Note: Using $740(\mathrm{~N})$ gives an answer $8.3\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ |
|  |  | iv | ( $D$ and $W$ are) equal | B1 | Not: $D$ and $W$ are 'balanced/equilibrium' |
|  |  | v | $\begin{aligned} & \text { drag = weight } \\ & 736=0.30 \times v^{2} \\ & v=49.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { or } 50\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | Bald answer of $49.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ or $50\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ scores 2 marks |
|  |  |  | Total | 10 |  |



| Question |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :--- | :---: | :--- |
|  | iii | Mention of circles / spheres / shells | B1 | Note: This mark can be scored if a diagram shows circles / arcs (no label <br> required) |
|  | The position of the car is where the circles <br> intersect / trilateration mentioned | B1 | Note: This mark can be scored on a diagram if it shows intersecting <br> (ircles / arcs and the intersection point is marked 'car' |  |
| Total | $\mathbf{1 2}$ |  |  |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | a |  | Energy can neither be created nor destroyed (but it can be transformed from one form to another) or Total energy of a closed system remains constant | B1 |  |
| - | b | i | $\begin{aligned} \text { loss in } \mathrm{PE} & =0.10 \times 9.81 \times 0.60 \\ & =0.59(\mathrm{~J}) \text { or } 0.589(\mathrm{~J}) \end{aligned}$ | B1 |  |
|  |  | ii | $\begin{aligned} & v^{2}=2 a s / v^{2}=2 \times 2.8 \times 0.60 / v^{2}=3.36 \\ & v=\sqrt{2 \times 2.8 \times 0.60} \text { or } v=1.8 \underline{33} \text { or } v=1.8 \underline{3} \\ & v=1.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ | M1 <br> M1 <br> A0 |  |
|  |  | iii | $\begin{aligned} & (\mathrm{KE}=) \frac{1}{2} m v^{2} \quad / \quad(\mathrm{KE}=) \frac{1}{2} \times 0.25 \times 1.8^{2} \\ & \text { kinetic energy }=0.405(\mathrm{~J}) \text { or } 0.41(\mathrm{~J}) \end{aligned}$ | C1 <br> A1 | Possible ecf from (b)(ii) <br> Note: The answer is $0.42(\mathrm{~J})$ when $1.83 \mathrm{~m} \mathrm{~s}^{-1}$ is used Allow: 1 mark for 0.162 (J) if 0.10 kg mass is used or for 0.567 (J) if 0.35 kg is used |
|  |  | iv | KE of 0.10 kg mass is not taken into account (AW) | B1 | Not: 'There is friction' |
|  |  |  | Total | 7 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q | a | i | Extension is proportional to force (applied as long as the elastic limit is not exceeded) | B1 | Must use tick or cross on Scoris to show if the mark is awarded <br> This B1 can only be scored when 'extension' is spelled correctly Note: If 'change in length' or ' $\Delta$ length' used instead of 'extension', then length must be spelled correctly <br> Allow: stress $\propto$ strain as BOD (stress or stain must be spelled correctly) |
|  |  | ii | $\begin{aligned} & \mathrm{p} \rightarrow 10^{-12} \\ & \mathrm{n} \rightarrow 10^{-9} \\ & k=\frac{F}{x} \quad, \quad k=\frac{210 \times 10^{-12}}{0.16 \times 10^{-9}} \\ & \text { force constant }=1.3\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \text { or } 1.31\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$ | C1 <br> C1 <br> A1 | Possible ecf <br> Allow: 1 mark for ' $210 / 0.16=1312.5$ ’ |
|  | b | i | $\begin{aligned} & E=\text { gradient } / E=\text { stress/strain (linear section) } \\ & E=\frac{70 \times 10^{6}}{0.8 \times 10^{-3}} \\ & E=8.8 \times 10^{10}(\mathrm{~Pa}) \text { or } 8.75 \times 10^{10}(\mathrm{~Pa}) \\ & \text { unit: } \mathrm{N} \mathrm{~m}^{-2} \text { or } \mathrm{Pa} \end{aligned}$ | C1 <br> A1 <br> B1 | Allow: An answer in the range (8.3 to 9.1) $\times 10^{10}(\mathrm{~Pa})$ <br> Allow: 1 mark for an answer $8.75 \times 10^{\mathrm{n}}, \mathrm{n} \neq 10$ <br> Note: This is an independent mark |
|  |  | ii | $\begin{aligned} & \text { breaking stress }=6.0 \times 10^{7}(\mathrm{~Pa}) \\ & A=\frac{19}{6.0 \times 10^{7}} \text { (Any subject) } \\ & A=3.2 \times 10^{-7}\left(\mathrm{~m}^{2}\right) \text { or } 3.17 \times 10^{-7}\left(\mathrm{~m}^{2}\right) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | Allow: 1 mark $3.17 \times 10^{\mathrm{n}}\left(\mathrm{m}^{2}\right), \mathrm{n} \neq-7$ <br> Note: No marks if breaking stress of $\underline{6.0} \times 10^{\mathrm{n}}$ is not used |
|  |  |  | Total | 9 |  |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU


Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

